TPC Momentum Resolution - a full simulation

D. Karlen / U. Victoria & TRIUMF LC TPC mini workshop LAL-Orsay, Paris Jan 12, 2005

Introduction

Several groups (including Victoria) are using small prototype TPCs to characterize the performance for a LC TPC

- Our data taking run with cosmics and laser tracks in the DESY magnet last summer was very successful
 - presentation at Durham LCWS showed preliminary results
 - full analysis is getting underway hope to have more complete results for the SLAC LCWS

This talk presents a simulation study of momentum resolution for a large GEM/MM TPC

extrapolation of small prototypes to a full size TPC

Goals

- Check that the track fit can achieve desired momentum resolution
- > Test resolution dependence on
 - pad sizes
 - channel to channel gain variations
 - electronics noise
 - thresholds
 - other systematic effects...

Full simulation scheme:

- GEANT3 simulation of muon propagation and energy loss in a 140 cm length of TDR gas in 4.0 T field
 - energy losses in 1 mm segments are saved to flat files
- jtpc simulation program:
 - reads energy losses and converts to electron/ion pairs
 - electrons drift, diffuse, pass through GEM holes, are amplified, diffuse, get collected on pads, pad signals generated, digitized, and signals stored in data files
- jtpc data analysis program:
 - read data files, signals converted to charge estimates
 - Jikelihood track fit performed to estimate track parameters
 - momentum resolution determined

Comparison of prototype and simulation

> agreement is reasonably good

jtpc tracking details

> Pad response function

- in a GEM (or micromegas) TPC this can be parameterized analytically, using a simple model
- Four track parameters:
 - x₀ (x at y=0)
 - \$\overline{\phi_0}\$ (azimuthal angle at y=0)
 - σ (transverse s.d.
 of cloud)
 - 1/r (radius of curvature)

TPC Momentum Resolution

January 12, 2005

6

Traditional tracking

> The traditional approach:

 examine data from each row separately: define a point along the track

Traditional tracking

> The traditional approach:

- examine data from each row separately: define a point along the track
- find best track that goes through points

Traditional tracking

Problem with the traditional approach:

- information in one row is not sufficient to define a point along the track:
 - charge sharing depends on
 - x coordinate
 - local azimuthal angle
 - width of charge cloud
 - effect is largest when few pads hit per row
- dependence is non-linear
 - linear centroid finding degrades resolution

Whole track approach

> The whole track approach:

- fit information from all rows to determine the track parameters at once
- Benefits of the whole track approach:
 - no empirical parameters
 - less calibration
 - reasonable estimates for error matrix
 - better resolution

TPC simulation

> TDR gas at 4 T assumed:

Gas Gap: Drift Gap
Thickness3,000mmTrans. diff.67.76um/sqrt(cm)Drift velocity45.48um/nsLong. diff.297.91um/sqrt(cm)
GEM Foil: Foil 2
Gain 100 Collection eff. 1 Extraction eff. 0.7 Thickness 0.1 mm
Foil hole layout:x number1,215x origin-150.07mmHex Packpitch:0.14mmx number10,001y origin-690.07mm
Foil hole shape: Circle T radius: 0.05 mm
Gas Gap: Transfer Gap
Thickness5mmTrans. diff.318.94um/sqrt(cm)Drift velocity30.1um/nsLong. diff.227.51um/sqrt(cm)

TPC simulation

➤ cont...

GEM Foil: Foil 1
Gain 100 Collection eff. 1 Extraction eff. 0.7 Thickness 0.1 mm Foil hole layout: pitch: 0.14 mm x number 1,215 x origin -150 mm Hex Pack pitch: 0.14 mm x number 1,001 y origin -690 mm
Foil hole shape: Circle T radius: 0.05 mm
Gas Gap: Induction Gap
Thickness5mmTrans. diff.334.24um/sqrt(cm)Drift velocity30.35um/nsLong. diff.220.11um/sqrt(cm)
Pad Row Lavout: Readout Pads
Design Pad Row Layout Batch Pad Row Layout
Pixel Size:0.5mmx_min (left):-150x_max (right):20mmy_min (bottom):-690y_max (top):710mm

Simulation

> Other parameters:

Geant parameters			
🗾 use geant file	Geant File Na	me: data/tesla	_10GeV_hits.dat
× offset (mm)	0.0	particle code	6
y offset (mm)	0.0	Wi (eV)	26.0
z offset (mm)	2500.0		

Pre-Amp parameters			
	gain (mV/fC)	14.0 gain s.d. (rel)	0.0
	rise time (ns)	500 fall time (ns)	500
FADC parameters			
	gain (ch/mV) delta t (ns)	2.0 # bits 100.0 # bins	10 800

Example 10 GeV muon event

Pad size: 2 × 7 mm² Drift distance: 2.5 m

Event #1: true p_t: 10.0013 GeV/c fit p_t: 10.0017 GeV/c (Too good!)

January 12, 2005

TPC Momentum Resolution

Momentum resolution

repeated events (same track parameters)

$$\delta\left(\frac{1}{p_{\perp}}\right) = 2.8 \times 10^{-4} \left(\text{GeV/c}\right)^{-1}$$

January 12, 2005

TPC Momentum Resolution

255

0

Resolution vs pt

Wider pads

> Charge sharing is less effective for wider pads:

> 4 mm appears to be too wide

January 12, 2005

TPC Momentum Resolution

Other pad sizes

Longer or narrower...

2 × 7 mm²

1.5 × 10 mm²

> 2mm x 7 mm seems reasonable

January 12, 2005

- Number of electrons collected by a pad is estimated by integrating the pulse over 7 time bins (peak +/- 3).
 - Prior to fitting, Gaussian noise is added
 - Noise on each channel assumed to be independent (no common mode included)

Influence of noise

Significant noise can be tolerated in this case

Comparison to standard parameterizations

> Agreement with point resolution ~ 300 μ m

$$\delta \left(\frac{1}{p_{\perp}}\right)_{\rm res} = \frac{1}{0.3B} \frac{\varepsilon}{L^2} \sqrt{\frac{720}{N+4}} = 0.78 \times 10^{-4} \, ({\rm GeV/c})^{-1} \frac{\varepsilon}{100\,\mu{\rm m}}$$
$$\delta \left(\frac{1}{p_{\perp}}\right)_{\rm ms} = \frac{1}{0.3B} \frac{0.016}{Lp_{\perp}\cos\lambda} \sqrt{\frac{L}{X_0}} = \frac{10.7 \times 10^{-4}}{p_{\perp}}$$

January 12, 2005

> Initial results encouraging:

- likelihood track fit appears to work reasonably well
 - resolution roughly agrees with parameterization
- TDR resolution goal nearly attained with TDR gas
- with large diffusion: relatively insensitive to noise at 5-10k e level

➤ To do:

- repeat analysis with lower diffusion gas: eg. P10
- move tracks around
- look at inclined tracks
- Iook at other systematics?